Application Guide HeraCeram® Zirkonia 750
Ceramic for veneering zirconia and lithium disilicate frameworks

Giving a hand to oral health.
HeraCeram® Zirkonia 750
For zirconia and lithium disilicate frameworks.

HeraCeram Zirkonia 750 is the perfect choice for framework materials with a CTE of 10.2 to 10.5 μm/mK, e.g., for veneering zirconia and lithium disilicate frameworks. The Stabilised Leucite Structure protects against crack propagation, chipping, and fracture, a recognised problem with some other Zirkonia ceramic systems. Heraceram Zirkonia 750 with its SLS formulation gives you proven reliability exactly when and where it's needed.

Table of contents

Framework preparation Page 08
Adhesive 750 Page 09
Dentine-enamel build up Page 11
Everyday layering Page 12
Personalised Layering Page 17
Highly Individualised Layering with the Matrix Concept Page 23
Layering Ceramic Margins Page 28
Colour Mapping Table Page 30
Firing Programmes Page 31
Ceramics that are perfectly adapted both in terms of their appearance and their technical properties: that means simple, reliable and fast processing with unbeatable aesthetic results. Each HeraCeram ceramic product is specifically tailored to suit your framework material. At the same time, every ceramic also offers consistent processing and high aesthetics for perfect results that you can rely on.

Optically perfect – with high purity quartz glass

Synthetic quartz glass is your guarantee for superior quality from all HeraCeram ceramics. Thanks to its extreme purity, it offers unique aesthetic properties, e.g. opalescence and fluorescence from within.

Technically perfect – with a stabilised leucite structure (SLS)

The stabilised leucite structure (SLS) ensures that HeraCeram ceramics are particularly resistant to stress. And the consistent level of microfine leucite crystals makes chipping a thing of the past.

Simply perfect – with a consistent processing philosophy

All HeraCeram ceramics are processed in exactly the same simplified way – allowing you to maximise your efficiency. There is also an added bonus: expensive time can be saved thanks to shorter firing and cooling times depending upon your preferred technique.
SLS

The recipe for success.

Leucite is the heart of dental ceramics. Without this silicate structure derived from mineral-classed silicates and zirconia, metal ceramics as we know them today would not exist. Leucite is responsible for the thermal expansion required when bonding ceramic to metal alloys. Adjusting thermal expansion, however, is not its only function. Leucite not only increases strength but more importantly reduces the bonding material’s susceptibility to stress.

The disadvantage of leucite with many metal ceramics is uncontrollable and continual growth of the leucite crystals during multiple firings. This leads to an increase in thermal expansion that can cause unpredictable stress in the framework metal ceramic bond. An uncontrollable increase in thermal expansion can be attributed to an unsuitable chemical composition and the type of manufacturing process.

In dental ceramics, the leucite acts like a plant that grows after absorbing nutrients. If the constituents are composed with an excess amount of \(\text{Al}_2\text{O}_3 \) and \(\text{K}_2\text{O} \), the leucite will continue to increase/grow during multiple firing.

In order to solve this problem, Kulzer dental ceramics are manufactured using completely different processing methods. All materials are manufactured using precisely coordinated constituents together with specific processing steps. This process, which we term leucite management, produces a “Stabilised Leucite Structure” known as SLS for short. Thanks to this processing method, all Kulzer dental ceramics allow you to enjoy the benefits of leucite without the worry of adverse effects such as an uncontrollable increase in CTE values.

For the user, this means maximum reliability and less stress, with a perfect aesthetic outcome.

![Fig. 1 HeraCeram Zirconia etching micrograph with leucite structure.](image1)

![Fig. 2 Extremely short firing times.](image2)

![Fig. 3 Comparison of CTE increase: Unstable CTE of other dental ceramic after multiple firing. Stabilised CTE of HeraCeram ceramics after multiple firing.](image3)
With HeraCeram ceramics, you can achieve aesthetic restorations that suit every need in any situation – from authentic reproduction of everyday A – D shades to skilful customisation, through to high end complex restorations with vibrant light dynamics.

Aesthetic veneering: Quite simple with standard materials, highly personalised with a wide range of custom materials or a very natural look with matrix materials. Giving you the flexibility you need for your design.

*Only HeraCeram Zirkonia
**Only HeraCeram Zirkonia 750
***Not available for HeraCeram Zirkonia 750
****Only HeraCeram

Ceramic® for all that you do

Perfect frameworks for all requirements.

Everyday
A – D Shades

Reliable reproduction of classic A – D shades

- Opaquer set
- Dentine incisal set
 Optional:
 - Stains set universal
- Liner set*
- Chroma dentine set**

Personalised

Patient specific shade adjustment

- Opaquer set
- Dentine incisal set
 Optional:
 - Stains set universal
- Liner set*
- Chroma dentine set**
- Increaser set
- Enhancer set

Our starter sets: First-Touch set (A2; A3; A3,5);
Professional set (BL3; A2; A3; A3,5; B2; B3; C2; C3; D3)**

Matrix

Truly natural for highly individualised restorations

- Opaquer set
- Dentine incisal set
 Optional:
 - Stains set universal
- Liner set*
- Chroma dentine set**
- Matrix set

Special

Special applications

- Margin set
- Bleach Shades***
- Pressable ceramics****
- Gingiva set
Perfectly tailored to your framework.
Framework preparation

Preparing the zirconia framework surface
The zirconia frameworks are cleaned with a steam jet. Sand blasting the framework for better bonding is not necessary. Zr adhesive 750 can now be applied directly to the surface of the framework.

Preparing the lithium disilicate framework surface
- All adaptations and possible shape corrections should be made before crystallisation if possible.
- In order to avoid overheating and breakage e.g. at the margin, always work with minimal pressure and adjusted rotational speed. Please observe the recommendations of the manufacturer for the rotating instruments.
- The minimum thickness required for lithium disilicate frameworks must be maintained.
- After completion of framework processing, the items must be thoroughly cleaned of abrasive dust and abrasive residues, e.g. using a steam jet.

NOTE: For preparation of the finalised framework, only use instruments which are recommended by the respective manufacturers e.g. Ivoclar Vivadent for the processing of lithium disilicate.

Do not sand blast the lithium disilicate surfaces with Al2O3 or glass beads.

Ceramic firing
Instructions for firing HeraCeram Zirkonia 750 can be found at page 31.

IMPORTANT INFORMATION The following data is based on procedures, equipment and materials recommended by Kulzer. If products from other manufacturers are used, the corresponding instructions for use and operating instructions must be observed.

VIDEOS: Watch videos about the different layering versions of HeraCeram Zirkonia 750.

Everyday layering
Start video kulzer.com/video_HC750_everyday

Personalised layering
Start video kulzer.com/video_HC750_personalised

Matrix layering
Start video kulzer.com/video_HC750_matrix
Adhesive 750

The adhesive has the ability to fully wet zirconia and lithium disilicate surfaces perfectly and thus ensure an optimum bond. The adhesive 750 is fluorescent and provides nature-like fluorescence from the depth of the restoration.

Fig. 4 Zirconia frames (white) ready for application of adhesive 750.

Fig. 5 Applying a uniform coat of Adhesive 750.

Fig. 6 Note the glossy appearance of the adhesive 750 after firing.
HeraCeram® Zirkonia 750

Fig. 7 Application of the adhesive 750 on lithium disilicate frameworks.

Fig. 8 Slightly glossy adhesive layer on the lithium disilicate surface after firing.

Fig 9 Image at tooth 21: Ideal fluorescence on a ceramic frame. Image at tooth 11: Zero fluorescence after none application of Adhesive 750

Fig. 10 Image at tooth 21: Ideal fluorescence on a finished restoration. Image at tooth 11: Without adhesive 750, shine-through on the none fluorescent frame.

PLEASE NOTE: The Adhesive 750 should be applied in a thin, uniform coat to the surfaces of the framework by using a HeraCeram opaque paste brush. The firing temperature on zirconia is 800°C and on lithium disilicate is 750°C, holdtime is 1 minute. (see the recommended firing cycles at page 31)
Dentine-enamel build up

HeraCeram Zirkonia 750 dentine and/or chroma dentine can be used for layering of the dentine core.

The dentine is highly transparent. This promotes brilliance but results in the shade of the framework having a stronger influence on the shade and brightness.

The underlying colour of zirconia frameworks are not standardised and may differ significantly in chroma and brightness from the desired tooth shade.

Chroma dentine (e.g. CD A3) is the same colour as the corresponding dentine (e.g. D A3). Its high colour density conceals the framework structures better and thus compensates differences in shade between the framework and the desired tooth shade. This allows the technician to adapt a preferred layering scheme to suit all indications.

The dentine core can be completely or partially built up with chroma dentine.
HeraCeram® Zirkonia 750
Everyday layering.

PLEASE NOTE: When grinding ceramic it is essential to wear a mask and safety glasses and use a dust extractor. Avoid inhaling dust.

Fig. 14 In order to achieve classic shades, HeraCeram Zirkonia can be built up in two simple layers using dentine and/or Chroma dentine and enamel depending on the shade of the framework.

www.kulzer.com/video_HC750_everyday

Fig. 15 The dentine body can either be built up directly or first built up full size before cut back – this provides for better control over dimensions and positioning.

Fig. 16 Completion with enamel powder (See colour mapping table at page 30).
Fig. 17 The cut back comprises the incisal edge of the dentine and tapers off towards the lower third of the tooth.

Fig. 18 By inserting transparent wedges, the incisal area can be additionally individualised.

Fig. 19 HeraCeram Zirkonia after the first firing.
Fig. 20 The appropriate ceramics (dentine, incisal or transparent) are then built up to compensate for firing shrinkage and finalisation of the shape before being fired with the “Dentine 2” cycle.

Fig. 21 The restoration after the second firing.

Fig. 22 If no further ceramic needs to be added, the ceramic should be ground with diamond burs to finalise the shape and surface morphology.
Glaze firing

HeraCeram stain liquids have the same refractive index as HeraCeram. The layering and shade effects can be made visible by wetting the ceramic surface with stain liquid. This allows special effects created with glaze and stains to be evaluated more easily.

The level of glaze and texture of the ceramic surface can be influenced while firing the glaze by adjusting the temperature, hold time and final temperature. Further influencing factors are the type of surface finishing and preparation for glaze firing. Therefore, the settings quoted for glaze firing may only be considered as guidelines which have to be adjusted to the desired outcome. The firing cycle is shown under Glaze Firing, see glaze firing programm in capture Firing Programmes.

HeraCeram Zirkonia 750 can also be polished by hand. Our Signum HP diamond polishing paste provides an excellent surface finish.

Fig. 23 Wetted surface with HeraCeram stain liquid.
HeraCeram® Zirkonia 750
Everyday layering.

Correction ceramic is for adjustment after the glaze firing, e.g. building up contact areas – its firing temperature of 715 °C is well below dentine firing temperature. Correction material is unshaded and transparent. If the corrections need shading, it can be mixed with any of the HeraCeram Zirkonia 750 ceramics. Depending on the mixing ratio, the firing or processing temperature of the correction material must be increased (e.g. 1:1 mixture – Firing temperature approx. 730 °C).

Fig. 24 In reflected light after first stage polishing.

Fig. 25 In transmitted light after glaze firing.
HeraCeram® Zirkonia 750

Personalised layering.

Increaser

The use of increasers improves control of the effect of the shade in all constrained spaces, such as for example, in the cervical region and if the framework shade differs greatly from the desired target shade. Likewise, excellent harmonisation of optical differences resulting from very wide variations in layer thickness, for example, in bridge sections, is possible.

For distinctive (patient-oriented) characterisations and individual modifications, 6 highly chromatised increasers are available in Peach (INP), Solaris (INS), Mango (INM), Orange (INO), Caramel (INC) and Taiga (INT).

A complete list of the colour mapping of the HeraCeram Zirkonia 750 materials can be found in Section E.

Fig. 26 Amazing personalised results can be achieved in just a few easy steps.

Fig. 27 (Teeth: 13–23): Increasers enhance the chroma and are placed in critical areas, if necessary without further layering, or wherever a frame or an area has to be masked properly even where only limited space is available.
For distinctive (patient-oriented) characterisations and individual modifications, 6 highly chromatised increasers are available.

Fig. 28 Increaser colour indicator.

Fig. 29 Crown contours built up fully with dentine and/or Chroma dentine and cut back...

Fig. 30 ...and adapted to the desired contour.
Enhancers are customised transparent ceramics with which the hue or brightness of the layering can be influenced slightly but without affecting the character of the shade. This enables the typical shade tones of central and lateral incisors as well as canines to be reproduced easily. Even those deviations in shade which cannot be shown on a shade guide can be achieved in a controlled manner using the 6 Enhancers.

Fig. 31 The effect created by Enhancers: Once the dentine has been cut back, the mamelons are formed smoothly with a brush. After that...

Fig. 32 ...the correct incisal ceramic for the shade is applied and feathered toward the dentine body. The restoration is then customised by completing the build up with Enhancers.
HeraCeram® Zirkonia 750

Personalised layering.

Fig. 33 The desired effect can thus be nuanced with correction layering or neutral shape corrections undertaken with enhancers.

Fig. 34 A highly attractive representation showing outstanding aesthetic results.
Mask

Incisal like ceramic with increased opacity, balances the transparency so that on the one hand, the in-depth effect is retained yet on the other hand the structure of the frameworks can no longer be perceived. MA bright and MA shadow can also be used to modify brightness.

Fig. 35 The Mask components and a typical example of how they are applied: After the body has been built up and cut back...

Fig. 36...a thin layer of Mask material is applied to the incisal area of the dentine to mask the oversized framework.
HeraCeram® Zirkonia 750
Personalised layering.

Fig. 37 Then as usual ...

Fig. 38 ... built up again incisal and transparent materials.

Fig. 39 With only minimal yet efficient effort, results can be achieved which are a pleasure to see.
HeraCeram® Zirkonia 750

Matrix layering.

Individualised layering with the Matrix Set

Custom build up concentrates on reproducing patient specific shades and shade characteristics with their light optical elements such as brightness, transparency, fluorescence and opalescence.

The ceramic compounds of the Matrix set have remarkable aesthetic properties. With their easy layering, they make completely natural results possible. The Matrix aesthetic concept, which is developed in cooperation with MDT Paul A. Fiechter, has a simple layered structure that is easy to implement.

Explanation of the Matrix components

- **MD Mamelon Dentine; SD Secondary Dentine** – Ceramics which balance chroma and fluorescence to illuminate the mamelon structures naturally.
- **VL Value** – Highly fluorescent ceramics for influencing the brightness in the incisal region.
- **OS Opal Incisals** – These incisal ceramics replace the corresponding standard incisal materials. They are arranged and used in the same manner.
- **OT Opal Transpa** – Transparent ceramics for use with custom build up techniques, which reflect the spectrum of natural enamel.
- **OT1 – OT10** – Neutral opalescence, where the concentration increases from OT1 to OT10, whereby the transparency decreases.
 - OT1 is the most transparent Opal ceramic.
 - OT10 is whitish opal.
- OTY; OTB; OTA; OTG and OT Ice: Opal Transpa ceramics with modified shades
 - OT Yellow
 - OT Blue
 - OT Amber
 - OT Grey
 - OT Ice

Fig. 40 Matrix shade guide.
HeraCeram® Zirkonia 750
Matrix layering.

Fig. 41 Mixing the appropriate shade of dentine with mamelon or secondary dentine increases its chroma in the cervical region. These compounds intensify the colours’ luminosity with their matching of chroma and fluorescence. (Alternatively, the colour-coordinated Increasers can also be used).

Fig. 42 The crowns are built up fully with dentine or chroma dentine to allow them to be cut back in a controlled manner.

Fig. 43 The central incisor has been cut back.

Fig. 44 To control the brightness or partial brightening of the dentine, the value materials in the incisal region are somewhat thicker (about 0.3 mm) and layered to the tooth with thin tapering.
Fig. 45 Smooth transitions are important to avoid distinct borders between the value material and base shade.

Fig. 46 ...and contoured like mamelons with a brush. This creates impressive interaction between the lighter and darker shaded areas. The resulting mamelon structures are further illuminated from within the layers by the highly fluorescent value materials.

Fig. 47 A ridge of e.g. Opal transpa Ice is laid over the mamelons.
HeraCeram® Zirkonia 750
Matrix layering.

Fig. 48 The mamelon structures are then overlaid with Opal incisal.

Fig. 49 The desired anatomical contours are then built up with the correct shade of Opal incisal or various Opal Transpa materials.

Fig. 50 Fully built up crown.
Glaze firing

Fig. 51 Final stage ready for glaze and/or polish.

Fig. 52 In transmitted light.
HeraCeram® Zirkonia 750

Margin

Use of shoulder materials
Shoulder materials (margin) can also be used for all-ceramic restorations, for example, if the framework material in the marginal area of the crown adversely affects the natural aesthetics or the framework structure is to be corrected. HM shoulder materials are characterised above all by their higher temperature stability and remain stable in subsequent firing. On the other hand, low-fusing LM shoulder materials (firing temperature 715 °C) can be used for corrections to the finished restoration.

Fig. 53 Absence of margin closure in the disto-cervical region of the crown.

Fig. 54 HeraCeram insulation should be applied directly to the plaster surface. Previous sealing of the plaster surface impairs the insulating effect.

First layer with HM shoulder material

Fig. 55 The shoulder material is mixed with the SM liquid and applied in the cervical area of the crown and fired at 780 °C.

Fig. 56 After adjustment the ceramic shoulder fits perfectly.
LM shoulder material (low fusing)

With the LM shoulder materials, the ceramic shoulders can be produced after the actual veneering, in other words, after the glaze firing. With their low processing temperature of 715°C, they are also suitable for all other adjustments, e.g. shape corrections or contact point additions.
HeraCeram® Zirkonia 750

Colour mapping table.

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A3.5</th>
<th>A4</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increaser</td>
<td>INA1</td>
<td>INA2</td>
<td>INA3</td>
<td>INA3.5</td>
<td>INA4</td>
<td>INB1</td>
<td>INB2</td>
<td>INB3</td>
<td>INB4</td>
<td>INC1</td>
<td>INC2</td>
<td>INC3</td>
<td>INC4</td>
<td>IND2</td>
<td>IND3</td>
<td>IND4</td>
</tr>
<tr>
<td>Increaser</td>
<td>INC</td>
<td>INC</td>
<td>INC</td>
<td>INC</td>
<td>INC</td>
<td>INS</td>
<td>INS</td>
<td>INT</td>
<td>INT</td>
<td>INT</td>
<td>INT</td>
<td>INT</td>
<td>INT</td>
<td>INT</td>
<td>INT</td>
<td>INT</td>
</tr>
<tr>
<td>Dentine</td>
<td>DA1</td>
<td>DA2</td>
<td>DA3</td>
<td>DA3.5</td>
<td>DA4</td>
<td>DB1</td>
<td>DB2</td>
<td>DB3</td>
<td>DB4</td>
<td>DC1</td>
<td>DC2</td>
<td>DC3</td>
<td>DC4</td>
<td>DD2</td>
<td>DD3</td>
<td>DD4</td>
</tr>
<tr>
<td>Chroma Dentine</td>
<td>CDA1</td>
<td>CDA2</td>
<td>CDA3</td>
<td>CDA3.5</td>
<td>CDA4</td>
<td>CDB1</td>
<td>CDB2</td>
<td>CDB3</td>
<td>CDB4</td>
<td>CDC1</td>
<td>CDC2</td>
<td>CDC3</td>
<td>CDC4</td>
<td>CDD2</td>
<td>CDD3</td>
<td>CDD4</td>
</tr>
<tr>
<td>Incisal</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S4</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S4</td>
<td>S1</td>
<td>S3</td>
<td>S3</td>
<td>S3</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Mamelon,</td>
<td>MD1</td>
<td>MD1</td>
<td>SD2</td>
<td>SD2</td>
<td>SD2</td>
<td>MD2</td>
<td>MD2</td>
<td>MD3</td>
<td>MD3</td>
<td>MD2</td>
<td>SD1</td>
<td>SD2</td>
<td>SD2</td>
<td>MD1</td>
<td>MD3</td>
<td>MD1</td>
</tr>
<tr>
<td>Secondary Dentine</td>
<td>VL1</td>
<td>VL2</td>
<td>VL3</td>
<td>VL4</td>
<td>VL4</td>
<td>VL1</td>
<td>VL2</td>
<td>VL3</td>
<td>VL4</td>
<td>VL1</td>
<td>VL2</td>
<td>VL3</td>
<td>VL4</td>
<td>VL2</td>
<td>VL3</td>
<td>VL4</td>
</tr>
<tr>
<td>Value</td>
<td>0S1</td>
<td>0S1</td>
<td>0S2</td>
<td>0S2</td>
<td>0S4</td>
<td>0S1</td>
<td>0S1</td>
<td>0S2</td>
<td>0S4</td>
<td>0S1</td>
<td>0S3</td>
<td>0S3</td>
<td>0S3</td>
<td>0S1</td>
<td>0S2</td>
<td>0S2</td>
</tr>
<tr>
<td>Opal Incisal</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Margin HM/M</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
General firing programmes

<table>
<thead>
<tr>
<th></th>
<th>For Zirconiumdioxide-Frameworks</th>
<th>For Lithium-Disilicate-Frameworks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adhesive Margin HM Dentine 1 Dentine 2 Glaze</td>
<td>Correction COR / LM</td>
</tr>
<tr>
<td>Preheating or starting temperature [°C]</td>
<td>500 500 500 500 500* 500</td>
<td>400 400 400 400 400* 400</td>
</tr>
<tr>
<td>Predrying and pre-heating time [min]</td>
<td>6 6 6 6 5 5</td>
<td>6 6 6 6 5 5</td>
</tr>
<tr>
<td>Heat rate [°C/min]</td>
<td>75 60 60 60 60 60</td>
<td>50 50 50 50 60 50</td>
</tr>
<tr>
<td>Final temperature [°C]</td>
<td>800 780 750 745 725 720</td>
<td>750 780 750 745 725 715</td>
</tr>
<tr>
<td>Holding time [min]</td>
<td>2 1 1 1 0.5–1 1</td>
<td>1 1 1 1 0.5–1 1</td>
</tr>
<tr>
<td>Vacuum start [°C]</td>
<td>500 500 500 500 – 500</td>
<td>400 400 400 400 – 400</td>
</tr>
<tr>
<td>Vacuum stop [°C]</td>
<td>800 780 750 745 – 720</td>
<td>750 780 750 745 – 715</td>
</tr>
</tbody>
</table>

when using Stains and Glaze pastes, starting temperature 600°C!

HeraCeram® Zirkonia 750 Firing programmes.

IMPORTANT:
The firing temperatures quoted here are guidelines only. Deviations may occur due to differences in furnace performance and may have to be compensated for if necessary.

<table>
<thead>
<tr>
<th></th>
<th>For Zirconiumdioxide-Frameworks</th>
<th>For Lithium-Disilicate-Frameworks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adhesive Margin HM Dentine 1 Dentine 2 Glaze</td>
<td>Correction COR / LM</td>
</tr>
<tr>
<td>START [°C]</td>
<td>500 500 500 500 500* 500</td>
<td>400 400 400 400 400* 400</td>
</tr>
<tr>
<td>DRY [min]</td>
<td>05:00 05:00 05:00 05:00 04:00 04:00</td>
<td>05:00 05:00 05:00 05:00 04:00 04:00</td>
</tr>
<tr>
<td>PRE HEAT [min]</td>
<td>01:00 01:00 01:00 01:00 01:00 01:00</td>
<td>01:00 01:00 01:00 01:00 01:00 01:00</td>
</tr>
<tr>
<td>HEAT RATE [°C/min]</td>
<td>75 60 60 60 60 60</td>
<td>50 50 50 50 60 50</td>
</tr>
<tr>
<td>HIGH TEMP [°C]</td>
<td>800 780 750 745 725 720</td>
<td>750 780 750 745 725 715</td>
</tr>
<tr>
<td>HOLD [min]</td>
<td>02:00 01:00 01:00 01:00 0:30–1:00 01:00</td>
<td>01:00 01:00 01:00 01:00 0:30–1:00 01:00</td>
</tr>
<tr>
<td>TEMPER [°C]</td>
<td>– – – – – –</td>
<td>– – – – – –</td>
</tr>
<tr>
<td>TEMP HOLD [min]</td>
<td>– – – – – –</td>
<td>– – – – – –</td>
</tr>
<tr>
<td>COOL TIME [min]</td>
<td>– – – – – –</td>
<td>– – – – – –</td>
</tr>
<tr>
<td>V ON [°C]</td>
<td>500 500 500 500 – 500</td>
<td>400 400 400 400 – 400</td>
</tr>
<tr>
<td>V OFF [°C]</td>
<td>800 780 750 745 – 720</td>
<td>750 780 750 745 – 715</td>
</tr>
<tr>
<td>V HOLD [min]</td>
<td>– – – – – –</td>
<td>– – – – – –</td>
</tr>
</tbody>
</table>

when using Stains and Glaze pastes, starting temperature 600°C!

HeraCeram® Zirkonia 750

Firing programmes.
HeraCeram® Zirkonia 750

Firing programmes.

Austromat 3001/Press-i-dent

<table>
<thead>
<tr>
<th>For Zirconiumdioxide-Frameworks</th>
<th>For Lithium-Disilicate-Frameworks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesive</td>
<td>Adhesive</td>
</tr>
<tr>
<td>C500 T300•L9 T60 V9 T075•C800 V0 T120 C0 L0 T2 C500</td>
<td>C400 T300•L9 T60 V9 T055•C750 V0 T60 C0 L0 T2 C400</td>
</tr>
<tr>
<td>Margin HM</td>
<td>Margin HM</td>
</tr>
<tr>
<td>C500 T300•L9 T60 V9 T065•C780 V0 T60 C0 L0 T2 C500</td>
<td>C400 T300•L9 T60 V9 T055•C780 V0 T60 C0 L0 T2 C400</td>
</tr>
<tr>
<td>Dentine 1</td>
<td>Dentine 1</td>
</tr>
<tr>
<td>C500 T300•L9 T60 V9 T065•C750 V0 T60 C0 L0 T2 C500</td>
<td>C400 T300•L9 T60 V9 T055•C750 V0 T60 C0 L0 T2 C400</td>
</tr>
<tr>
<td>Dentine 2</td>
<td>Dentine 2</td>
</tr>
<tr>
<td>C500 T300•L9 T60 V9 T065•C745 V0 T60 C0 L0 T2 C500</td>
<td>C400 T300•L9 T60 V9 T055•C745 V0 T60 C0 L0 T2 C400</td>
</tr>
<tr>
<td>Glaze</td>
<td>Glaze</td>
</tr>
<tr>
<td>C500 T240•L9 T60 T060•C725 T30 C0 L0 T2 C500</td>
<td>C400 T240•L9 T60 T050•C725 T30 C0 L0 T2 C400</td>
</tr>
<tr>
<td>Correction COR/LM</td>
<td>Correction COR/LM</td>
</tr>
<tr>
<td>C500 T240•L9 T60 V9 T060•C720 V0 T60 C0 L0 T2 C500</td>
<td>C400 T240•L9 T60 V9 T050•C715 V0 T60 C0 L0 T2 C400</td>
</tr>
</tbody>
</table>

Austromat M

<table>
<thead>
<tr>
<th>For Zirconiumdioxide-Frameworks</th>
<th>For Lithium-Disilicate-Frameworks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesive</td>
<td>Adhesive</td>
</tr>
<tr>
<td>500 500 500 550 500* 500</td>
<td>400 400 400 400 400* 400</td>
</tr>
<tr>
<td>Margin HM</td>
<td>Margin HM</td>
</tr>
<tr>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>Dentine 1</td>
<td>Dentine 1</td>
</tr>
<tr>
<td>5 5 5 5 4 4</td>
<td>5 5 5 5 4 4</td>
</tr>
<tr>
<td>Dentine 2</td>
<td>Dentine 2</td>
</tr>
<tr>
<td>1 1 1 1 1 1</td>
<td>1 1 1 1 1 1</td>
</tr>
<tr>
<td>Glaze</td>
<td>Glaze</td>
</tr>
<tr>
<td>9 9 9 9 0 9</td>
<td>9 9 9 9 0 9</td>
</tr>
<tr>
<td>Correction COR/LM</td>
<td>Correction COR/LM</td>
</tr>
<tr>
<td>75 60 60 60 60 60</td>
<td>50 50 50 50 50 50</td>
</tr>
<tr>
<td>START</td>
<td>END</td>
</tr>
<tr>
<td>500 500 500 500 550 500* 500</td>
<td>800 780 750 745 725 720</td>
</tr>
<tr>
<td>°C•min.</td>
<td>°C•min.</td>
</tr>
<tr>
<td>75 60 60 60 60 60</td>
<td>50 50 50 50 50 50</td>
</tr>
<tr>
<td>VAC</td>
<td>VAC</td>
</tr>
<tr>
<td>9 9 9 9 0 9</td>
<td>9 9 9 9 0 9</td>
</tr>
<tr>
<td>°C•min.</td>
<td>°C•min.</td>
</tr>
<tr>
<td>75 60 60 60 60 60</td>
<td>50 50 50 50 50 50</td>
</tr>
</tbody>
</table>

when using Stains and Glaze pastes, starting temperature 600°C
IMPORTANT: The firing temperatures quoted here are guidelines only. Deviations may occur due to differences in furnace performance and may have to be compensated for if necessary.

Austromat 624/654 press-i-dent

For Zirconiumdioxide-Frameworks

<table>
<thead>
<tr>
<th></th>
<th>Adhesive</th>
<th>Margin HM</th>
<th>Dentine 1</th>
<th>Dentine 2</th>
<th>Glaze</th>
<th>Correction COR / LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drying</td>
<td>02:00</td>
<td>00:00</td>
<td>00:00</td>
<td>00:00</td>
<td>00:00</td>
<td></td>
</tr>
<tr>
<td>Closing Time</td>
<td>05:00</td>
<td>05:00</td>
<td>05:00</td>
<td>05:00</td>
<td>04:00</td>
<td></td>
</tr>
<tr>
<td>Pre heat</td>
<td>500°C</td>
<td>01:00</td>
<td>500°C</td>
<td>01:00</td>
<td>01:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500°C</td>
<td>01:00</td>
<td>01:00</td>
<td>01:00</td>
<td>01:00</td>
<td></td>
</tr>
<tr>
<td>High Temp</td>
<td>890°C 75°C/min</td>
<td>01:00</td>
<td>780°C 60°C/min</td>
<td>01:00</td>
<td>750°C 60°C/min</td>
<td>01:00</td>
</tr>
<tr>
<td></td>
<td>01:00</td>
<td>01:00</td>
<td>01:00</td>
<td>01:00</td>
<td>01:00</td>
<td></td>
</tr>
<tr>
<td>Temper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAC</td>
<td>100%</td>
<td>01:00</td>
<td>100%</td>
<td>01:00</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

*when using Stains and Glaze pastes, starting temperature 600°C!

Austromat 624/654 press-i-dent

For Lithium-Disilicate-Frameworks

<table>
<thead>
<tr>
<th></th>
<th>Adhesive</th>
<th>Margin HM</th>
<th>Dentine 1</th>
<th>Dentine 2</th>
<th>Glaze</th>
<th>Correction COR / LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drying</td>
<td>00:00</td>
<td>00:00</td>
<td>00:00</td>
<td>00:00</td>
<td>00:00</td>
<td></td>
</tr>
<tr>
<td>Closing Time</td>
<td>05:00</td>
<td>05:00</td>
<td>05:00</td>
<td>05:00</td>
<td>04:00</td>
<td></td>
</tr>
<tr>
<td>Pre heat</td>
<td>400°C</td>
<td>01:00</td>
<td>400°C</td>
<td>01:00</td>
<td>01:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400°C</td>
<td>01:00</td>
<td>01:00</td>
<td>01:00</td>
<td>01:00</td>
<td></td>
</tr>
<tr>
<td>High Temp</td>
<td>750°C 50°C/min</td>
<td>01:00</td>
<td>780°C 50°C/min</td>
<td>01:00</td>
<td>750°C 50°C/min</td>
<td>01:00</td>
</tr>
<tr>
<td></td>
<td>01:00</td>
<td>01:00</td>
<td>01:00</td>
<td>01:00</td>
<td>01:00</td>
<td></td>
</tr>
<tr>
<td>Temper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAC</td>
<td>100%</td>
<td>01:00</td>
<td>100%</td>
<td>01:00</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
HeraCeram® Zirkonia 750

Firing programmes.

Multimat MC II/Mach 2/Touch & Press

<table>
<thead>
<tr>
<th>Programme</th>
<th>Adhesive Margin HM</th>
<th>Dentine 1</th>
<th>Dentine 2</th>
<th>Glaze</th>
<th>Correction COR/LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Zirconiumdioxide-Frameworks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preheat temp. (°C)</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500*</td>
</tr>
<tr>
<td>Drying (min)</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Preheating (min)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Vacuum time (°C)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>Firing time (min)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>0.5–1.0</td>
</tr>
<tr>
<td>Firing temp. (°C)</td>
<td>800</td>
<td>780</td>
<td>750</td>
<td>745</td>
<td>725</td>
</tr>
<tr>
<td>Heat rate (°C/min)</td>
<td>75</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Vacuum (mPa)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programme</th>
<th>Adhesive Margin HM</th>
<th>Dentine 1</th>
<th>Dentine 2</th>
<th>Glaze</th>
<th>Correction COR/LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Lithium-Disilicate-Frameworks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preheat temp. (°C)</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400*</td>
</tr>
<tr>
<td>Drying (min)</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Preheating (min)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Vacuum time (°C)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>Firing time (min)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.5–1.0</td>
</tr>
<tr>
<td>Firing temp. (°C)</td>
<td>750</td>
<td>780</td>
<td>750</td>
<td>745</td>
<td>725</td>
</tr>
<tr>
<td>Heat rate (°C/min)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Vacuum (mPa)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

Programat X1/EP 600/P300/P500/P700/EP3000/EP5000

<table>
<thead>
<tr>
<th>Programme</th>
<th>Adhesive Margin HM</th>
<th>Dentine 1</th>
<th>Dentine 2</th>
<th>Glaze</th>
<th>Correction COR/LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Zirconiumdioxide-Frameworks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby temp. (°C)</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500*</td>
</tr>
<tr>
<td>Clos. time (min)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Heat rate (°C/min)</td>
<td>75</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Firing temp. (°C)</td>
<td>800</td>
<td>780</td>
<td>750</td>
<td>745</td>
<td>725</td>
</tr>
<tr>
<td>Holding time (min)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.5–1</td>
</tr>
<tr>
<td>Vac. ON (°C)</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Vac. OFF (°C)</td>
<td>1° below T</td>
<td>1° below T</td>
<td>1° below T</td>
<td>1° below T</td>
<td>–</td>
</tr>
<tr>
<td>Heat rate (°C/min)</td>
<td>75</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Firing temp. (°C)</td>
<td>800</td>
<td>780</td>
<td>750</td>
<td>745</td>
<td>725</td>
</tr>
<tr>
<td>Holding time (min)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.5–1</td>
</tr>
<tr>
<td>Temper (°C)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Temper (min)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Opening temp. (°C)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Opening time (min)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Vacuum</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Vacuum release</td>
<td>Heating</td>
<td>Heating</td>
<td>Heating</td>
<td>Heating</td>
<td>–</td>
</tr>
<tr>
<td>Vacuum End (°C)</td>
<td>800</td>
<td>780</td>
<td>750</td>
<td>745</td>
<td>720</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programme</th>
<th>Adhesive Margin HM</th>
<th>Dentine 1</th>
<th>Dentine 2</th>
<th>Glaze</th>
<th>Correction COR/LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Lithium-Disilicate-Frameworks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby temp. (°C)</td>
<td>403</td>
<td>403</td>
<td>403</td>
<td>403</td>
<td>403*</td>
</tr>
<tr>
<td>Clos. time (min)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Heat rate (°C/min)</td>
<td>75</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Firing temp. (°C)</td>
<td>750</td>
<td>780</td>
<td>750</td>
<td>745</td>
<td>725</td>
</tr>
<tr>
<td>Holding time (min)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.5–1</td>
</tr>
<tr>
<td>Temper (°C)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Temper (min)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Opening temp. (°C)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Opening time (min)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Vacuum</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Vacuum release</td>
<td>Heating</td>
<td>Heating</td>
<td>Heating</td>
<td>Heating</td>
<td>–</td>
</tr>
<tr>
<td>Vacuum End (°C)</td>
<td>800</td>
<td>780</td>
<td>750</td>
<td>745</td>
<td>720</td>
</tr>
</tbody>
</table>

*when using Stains and Glaze pastes, starting temperature 600 °C!

Vario 200/300

<table>
<thead>
<tr>
<th>Programme</th>
<th>Adhesive Margin HM</th>
<th>Dentine 1</th>
<th>Dentine 2</th>
<th>Glaze</th>
<th>Correction COR/LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Zirconiumdioxide-Frameworks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start temp. (°C)</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500*</td>
</tr>
<tr>
<td>Predrying</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Predrying time (min)</td>
<td>00:00</td>
<td>00:00</td>
<td>00:00</td>
<td>00:00</td>
<td>00:00</td>
</tr>
<tr>
<td>Closing (min)</td>
<td>05:00</td>
<td>05:00</td>
<td>05:00</td>
<td>05:00</td>
<td>04:00</td>
</tr>
<tr>
<td>Homogenisation (°C)</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Homogenisation (min)</td>
<td>01:00</td>
<td>01:00</td>
<td>01:00</td>
<td>01:00</td>
<td>01:00</td>
</tr>
<tr>
<td>Heat rate (°C/min)</td>
<td>75</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Firing temp. (°C)</td>
<td>800</td>
<td>780</td>
<td>750</td>
<td>745</td>
<td>725</td>
</tr>
<tr>
<td>Holding time (min)</td>
<td>02:00</td>
<td>01:00</td>
<td>01:00</td>
<td>01:00</td>
<td>00:30–01:00</td>
</tr>
<tr>
<td>Temper (°C)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Temper (min)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Opening (°C)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Opening time (min)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Vacuum</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Vacuum release</td>
<td>Heating</td>
<td>Heating</td>
<td>Heating</td>
<td>Heating</td>
<td>–</td>
</tr>
<tr>
<td>Vacuum End (°C)</td>
<td>800</td>
<td>780</td>
<td>750</td>
<td>745</td>
<td>–</td>
</tr>
</tbody>
</table>
IMPORTANT: The firing temperatures quoted here are guidelines only. Deviations may occur due to differences in furnace performance and may have to be compensated for if necessary.

Vacumat 6000 M

<table>
<thead>
<tr>
<th></th>
<th>For Zirconiumdioxide-Frameworks</th>
<th>For Lithium-Disilicate-Frameworks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesive</td>
<td>Adhesive Margin HM</td>
<td>Adhesive 400</td>
</tr>
<tr>
<td>Margin HM</td>
<td>Dentine 1 Dentine 2 Glaze</td>
<td>Dentine 1 Dentine 2 Glaze</td>
</tr>
<tr>
<td>Correction</td>
<td>COR / LM</td>
<td>COR / LM</td>
</tr>
<tr>
<td>Standby temp. [°C]</td>
<td>500 500 500 500 500* 500</td>
<td>400 400 400 400 400* 400</td>
</tr>
<tr>
<td>Drying [min]</td>
<td>6 6 6 6 5 5</td>
<td>6 6 6 6 5 5</td>
</tr>
<tr>
<td>Heating period [min]</td>
<td>4.00 4.10 4.50 3.45 3.40</td>
<td>7.00 7.35 7.00 6.54 5.25 6.18</td>
</tr>
<tr>
<td>Heat rate [°C/min]</td>
<td>75 60 60 60 60 60</td>
<td>50 50 50 50 50 50 50 50</td>
</tr>
<tr>
<td>Final temp. [°C]</td>
<td>800 780 750 745 725 720</td>
<td>750 780 750 745 725 715</td>
</tr>
<tr>
<td>Holding time [min]</td>
<td>2 1 1 1 0.5–1 1</td>
<td>1 1 1 1 1 0.5–1</td>
</tr>
<tr>
<td>Vac. time [min]</td>
<td>4.00 4.10 4.05 – 3.40</td>
<td>7.00 7.35 7.00 6.54 – 6.18</td>
</tr>
</tbody>
</table>

when using Stains and Glaze pastes, starting temperature 600°C!

NOTE: Firing recommendations for additional ceramic kilns are available on our website at kulzer.com/download
HeraCeram® Stains universal
The range of stains for universal applications

Stain Set, universal.
The Stains universal set includes 22 Stains (2 ml) and a Glaze paste (2 ml).

Contents
- 17 x 2 ml Individual Stains
- 3 x 2 ml Body Stain BS-A; BS-B; BS-C
- 2 x 2 ml Enamels EN Pearl; EN Opal
- 1 x 2 ml Glaze GL
- 1 x 2 ml Stain Liquid universal SLU
- 1 x Stain brush
- 1 x Glaze brush
- 1 x Shade guide
- Art. Code: 6605 2534
- In addition to the set, the Glaze is also available as a powder (20 g).

Stain Set, universal, powder.
The Stains universal set includes 22 Stains (3 g) and a Glaze (3 g).

Contents
- 17 x 3 g Individual Stains
- 3 x 3 g Body Stain BS-A; BS-B; BS-C
- 2 x 3 g Enamels EN Pearl; EN Opal
- 1 x 3 g Glaze GL
- 1 x 3 g Stain Liquid universal SLU
- 1 x Stain brush
- 1 x Glaze brush
- 1 x Shade guide
- Art. Code: 6605 8216
- In addition to the set, the Glaze is also available as a powder (20 g).

Contact in Germany
Kulzer GmbH
Leipziger Straße 2
63450 Hanau, Germany
info.lab@kulzer-dental.com

© 2017 Kulzer GmbH. All Rights Reserved.
kulzer.com